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Wave-current interactions : an experimental and 
numerical study. Part 2. Nonlinear waves 

By G. P. THOMAS 
Department of Mathematical Physics, University College, Cork, Ireland 

(Received 12 May 1989 and in revised form 14 November 1989) 

The interaction between a regular wavetrain and a current possessing an arbitrary 
distribution of vorticity, in two dimensions, is considered for waves of finite 
amplitude. A numerical model is constructed, primarily for use in the finite depth 
regime, extending the work of Dalrymple (1973, 1977) and this is used to predict the 
wavelength and the particle velocities under the waves. These predictions agree very 
well with experimentally obtained data and the importance of the vorticity in the 
wave-current interaction is clarified. Amplitude and wavelength modulations are 
considered for finite amplitude waves on a slowly varying irrotational current ; 
moderate agreement is found between theory and experiment. 

1. Introduction 
The interaction between a steady current and a regular progressive wavetrain in 

two dimensions can only be described via an analytic solution if the waves are 
irrotational, corresponding to a uniform current or one with a uniform distribution 
of vorticity. If the current possesses an arbitrary distribution of vorticity then 
analytical solutions cannot be obtained for either linear or finite-amplitude waves 
and numerical solutions must be sought. The existing analytical work on 
wave-current interactions is well documented in the major review by Peregrine 
(1976) and a briefer more recent review is given by Peregrine & Jonsson (1983). In  
the later review the authors make a ‘state-of-the-art ’ assessment and conclude that 
the influence of vertical variation in the current profile, i.e. the vorticity, is as yet 
poorly understood. This partially represents a lack of existing study for engineering 
applications, since the model of Thomas (1981) for linear waves on a non-uniform 
current has been verified experimentally and is simple to implement. Thus for linear 
waves the method of solution exists; the aim of this paper is to study the case for 
which the waves are of finite amplitude. 

For finite-amplitude waves with an arbitrary distribution of vorticity, the only 
existing work is due to Dalrymple (1973, 1977), who constructed a numerical model 
based upon a Dubreil-Jacotin transformation. Examples were given by Dalrymple 
for a linear shear current and a current similar to a +-power-law, but one of the 
drawbacks with the Dalrymple model is that the vorticity distribution is defined in 
terms of stream-function values and is not a direct function of the vertical coordinate 
z. More recent numerical work for finite-amplitude waves has been focused on linear 
current profiles, for which the wave field is irrotational. Simmen & Saffman (1985) 
considered the case for waves on water of infinite depth with solutions obtained for 
waves up to and including the limiting waves. An extension to water of finite depth 
has been made by Teles da Silva & Peregrine (1988). One feature of these numerical 
models for irrotational waves is that they are computationally very efficient. 
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There have been two major relevant experimental studies in recent years and both 
have been primarily concerned with measurement of velocities and wavelengths to 
demonstrate the practical significance of the interaction between waves and 
currents. The first study is reported by Brevik & Aas (1980) and by Brevik (1980) ; 
measurements were obtained for both rippled and smooth beds but difficulty was 
experienced in reconciling experimental data with irrotational wave theories. The 
second set of experiments was conducted by Kemp & Simons (1982, 1983) in a study 
of the interaction between regular waves and a turbulent current over rough and 
smooth beds. Particular attention was given to the near-bed region in which 
except(iona1ly detailed measurements were obtained. This study is probably the most 
comprehensive to date and illustrated the interactive mechanism between the waves 
and current very dramatically. Both of the studies were within the near-linear regime 
and wave effects higher than second order were not considered. In  addition 
comparison with wave theories was limited to irrotational waves; in most of the 
current profiles presented the vorticity showed a variation with depth and this would 
very likely prove important if an accurate comparison of theory and experiment were 
required. 

This paper extends the previous work of Thomas (1981) to finite-amplitude waves 
interacting with a current which possesses an arbitrary distribution of vorticity. For 
a given mean water depth, wave frequency, wave amplitude and current profile 
below the wave trough, the theoretical model aims to provide a complete description 
of the wave kinematics and these are usually represented by the wavelength and the 
velocity profiles under the wave crest and trough. 

The numerical model is based upon the work of Dalrymple (1973, 1977) and 
includes the current as a function of the vertical depth coordinate. To implement this 
depth variation in the current the appropriate relationships between the vorticity 
distribution and the flow parameters must be determined; these are derived in the 
earlier part of the paper. The numerical model is then formulated as a constrained 
minimization problem utilizing the property that the free surface is one of constant 
pressure. Existing finite-amplitude solutions are used to test the model. 

Predictions of the numerical model are compared with experimental data and 
excellent agreement is found to exist between measured and predicted wavelengths 
and velocity profiles. From this comparison some important comments can be made 
upon the influence of the vorticity distribution on the flow kinematics and the 
applicability of various wave theories, though it  should be acknowledged that these 
restrictions are only deduced for waves in water of finite depth. Finally an attempt 
is made to place the experimental results in a wider framework by using the 
Whitham (1974) theory to consider the amplitude and wavelength modulations for 
a slowly varying flow. Despite the acknowledged presence of vorticity (which has 
been shown to be relevant to the local kinematics) and laboratory constraints, a 
surprisingly good degree of agreement was found to exist between the experimental 
values and predictions using the Whitham theory for irrotational currents. 

2. Formulation 
A regular wavetrain of plane waves propagates over water of mean constant depth 

h. The wavetrain is characterized by an amplitude measure a, wavenumber E and 
frequency w .  Alternatively the wave height H ,  wavelength A( = 27c/k) and period 
T( =27c/w) could be used. 

Cartesian coordinates ( x , x )  are chosen so that the horizontal x-axis is in the 
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FIGURE 1. Definition of coordinate system. 

direction of wave propagation and the z-axis points vertically upwards ; the origin 
lies in the mean water level and the coordinate system is shown in figure 1. The 
surface elevation of the wavetrain is described by z = q ( x , t )  and the wave troughs 
and crests correspond to the points a t  which z = zt and z = z ,  respectively. 

For all points below the wave trough the horizontal component of velocity u can 
be written as a superposition of a time-independent current term and a wave-like 
tferm 

U(Z,  Z ,  t )  = U(X)  +uW(z, 2, t ) ,  - h < z < zt (2.1) 

with the average value of u, over a wave period or a wavelength being zero. This 
wave-like velocity component can also be written as a harmonic series 

in terms of the phase function kx-wt ,  valid for -h < x < zt. Between the wave 
trough and the wave crest, i.e. zt < z < z,, the velocity field is well defined but cannot 
be meaningfully written in a form analogous to (2.1). 

The quantities a,  w and h, together with the function U(z) ,  can be regarded as 
known either from experimental measurements or by specification. Using this 
information the aim is to predict the wavelength, the surface profile and the velocity 
field under the waves. The water is assumed to be both incompressible and inviscid 
but the wavetrain is allowed to be both of finite amplitude and rotational. 

2.1. The stream function + 
The formulation can be simplified by changing to a frame of reference in which the 
origin moves in the direction of propagation of the wave with a speed c equal to the 

17 FLM 216 
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phase speed of the wave, i.e. c = w / k .  In such a reference frame the wave is stationary 
and the flow is steady. 

For an incompressible fluid in this moving reference frame, the stream function 
$(x,y) is defined by 

(2.3) u - c = - -  all. w = -  all. 
a Z  ax 

where w is the vertical component of velocity. As the flow is two-dimensional, 
inviscid and incompressible, an application of Helmholtz’s theorem yields 

V2$ = -Q(ll.), (2.4) 
where i2 is the vorticity distribution in the fluid and is constant along a streamline. 
This Poisson equation is the governing equation for the flow. 

On the bottom boundary z = - h,  the vertical component of velocity must be zero. 
Using (2.3) this becomes 

= O  on z=-h .  (2.5) 
all. 
ax 
- 

In the moving reference frame, denote the free surface by z = [(x). The kinematic 
free-surface condition is readily shown to be equivalent to the statement that the free 
surface must be a streamline. Hence the kinematic condition becomes 

+(x, [(x)) = constant. (2.6) 
The dynamic free-surface condition asserts that the pressure p on the free surface 

is constant. For an inviscid fluid of constant density p in steady motion, Bernoulli’s 
equation states that the quantity p/p + &’2 + gz is constant along a streamline, where 
u‘ is the local velocity field. As u’ is equal to ( u - c ,  w )  and the pressure is constant 
on the free surface, Bernoulli’s equation on the free surface gives 

$[I); + ll.3 +g[ = constant on z = [(x), (2.7) 
where (2.3) has been used to determine u’. The values of the constants in (2.6) and 
(2.7) are not known or specified a t  this stage. 

The equation (2.4), together with the boundary conditions (2.5)-(2.7), determine 
the problem for the stream function +(x,z) and the surface elevation [(x). Only 
solutions that are periodic in x with finite period A are sought; the problem for 
solitary waves, as A+m, has previously been considered by Benjamin (1962). A 
further condition to be imposed is that the mean value of the surface elevation [(x) 
over any interval of length A must be zero ; this is a consequence of the origin being 
chosen to lie a t  the mean water level. 

2.2. The Dubreil- Jacotin transformation 

There are two main difficulties associated with the formulation outlined above. The 
first is that the vorticity distribution which appears in the Poisson equation is a 
function of the unknown dependent variable @(x, z ) .  The second is associated with 
the free surface, which is unknown and not likely to be a shape amenable to general 
numerical techniques. 

To overcome these difficulties the coordinate transformation devised by Dubreil- 
Jacotin (1934) is introduced. This employs x and 4 as the independent variables and 
z is regarded as a function of x and $. The transformation is shown diagrammatically 
in figure 2 for a domain of half a wavelength ; as the waves are both symmetric and 
periodic it is not necessary to use a larger domain. The transformed domain is 
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.Y = 0 

: = - h  

FIQURE 2. The wave domain before and after the Dubreil-Jacotin transformation, (a) in original 
coordinates (5, z) ,  (b) in transformed coordinates (5, +). 

rectangular in geometry and is bounded at the top and bottom by lines of constant 
@. For convenience, the bottom z = -h  is chosen to correspond to 9 = 0 and the 
surface streamline is then denoted by the unknown constant value @,. 

This rectangular domain in the (2, @)-plane is clearly more amenable to numerical 
computation and in particular to  the finite-difference technique. Furthermore the 
vorticity is now a function of the independent variable @. However, this apparent 
simplification in formulation is only achieved by an increase in algebraic complexity. 

The expressions for the local velocity field (u-c ,  w) from (2.3) become 

The analogous form of the Poisson equation (2.4) is 

z,, 2; - 22, z* z*2 + (1 + 2;) z** = a( @) z;, 

which is a nonlinear equation and valid for - 00 < x < o 0 , O  < @ < y iS .  
The bottom boundary condition (2.3) is that w = 0. From (2.8) this implies that 

either z, = 0 or z*-+ 00 on the lower boundary. The latter possibility suggests that  
u + c ,  from (2.8), and this cannot be generally true. Thus z, = 0 is the appropriate 
bottom boundary condition. However, the bottom z = - h is equivalent to  @ = 0 and 
hence the condition can be written simply as 

Z ( X ,  0) = - h. (2.10) 

The kinematic free-surface condition (2.6) is automatically satisfied by the 
transformation. To transform the dynamic free-surface condition note that the free- 
surface elevation z = g(x) corresponds to z = z(x,@,). Thus (2.7), after use of (2.8), 
becomes 

- [ l + z ~ ] + g ~ ( z , @ ~ )  = constant on @ = @.,. (2.11) 1 
22; 

Solutions of the system (2.9)-(2.11) are to be sought subject to  the periodicity 

17-2 
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condition and the condition that the mean free-surface position is zero. For practical 
purposes it is more convenient to use non-dimensional variables. Define X, Y, Z and 

The non-dimensional forms of (2.8)-(2.11) are 

(2.13) 

(2.14) Z ( X ,  0) = - 1 ,  

Q = Z ( X ,  l ) + 7 [ l + ( k h ) 2 Z $ ] 7  1c.i 1 on !P= 1: 

2gh ZY 
(2.15) 

where Q is an unknown constant. 
The formulation is not yet complete. For given input data a,  o, h, U ( z )  the system 

(2.12)-(2.15) is to be solved to yield the velocity field, surface elevation and the 
wavelength. The wavelength requires the wavenumber k, the surface elevation is 
given by Z ( X ,  1 )  and the velocity field, from (2 .12)  requires Z ( X ,  Y) in addition to k. 
All this assumes that @s and F (  Y) are known. Before a solution can be sought, it is 
clear that the relationship between @s, F ( Y ) ,  Z ( X ,  1 )  and the input data must be 
established. 

Dalrymple (1973, 1977) gives two examples of finite-amplitude wave-current 
interactions using this formulation. I n  the first example the vorticity was constant, 
i.e. F(  Y )  = constant, and in the second the vorticity F( Y) was proportional to Y-t. 
For the first case the wave field is irrotational and the value of @s was obtained using 
a stream-function model and then treated as an input parameter ; the same value of 
kS was then used for the second example. Although these examples provide an 
insight into the physical processes and the importance of vorticity, for a general flow 
specified by U(z)  a more fundamental approach is required. 

3. Some streamline properties 
3.1.  The surface streamline Ps 

In  the original reference frame the mean horizontal mass flux M ,  per wave cycle and 
per unit crest width, in the direction of wave propagation is defined by 

2x l0  s(z,t) 

= &Io s_, u(z,  z, t )  dz dt ,  

M = f* U W + E  s, I,, u(z,  z ,  t )  dzdt. 

(3 .1)  

If the representation for u(z,z,t) given by (2 .1 )  and (2 .2 )  for - h  < z < zt is 
which is independent of x. 

substituted into ( 3 . 1 ) ,  then the expression for M becomes 

2nlw t l ( X , t )  

(3 -2 )  

The first term represents the mass flux beneath the wave due entirely to the current ; 
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the second is the mass flux due to the wave and current between the wave trough and 
wave crest. This latter quantity cannot in general be determined analytically for 
waves on a rotational flow. To simplify the form for M in (3.2) introduce the 
parameter a, defined by rl;t(% t )  

ah  = - u(x,  2, t )  dzdt, (3.3) 2 R  

so that the mass flux M in (3.2) can be written simply as 

M = lh U(z)dz+ah. 

In  the moving reference frame in which the wave is stationary, the corresponding 
mean horizontal mass flux M+ will be just M-ch, i.e. 

M+ = s’ U(z)dz+ah-ch. 
-h 

(3.4) 

The stream function $(x, z )  which is related to the velocity components via (2.3) 
is defined by the integral representation 

(3.5) 

which is independent of the path and satisfies the criterion that $(x, -h) = 0. By 
choosing a path from (0, - h) to (x, -h )  and (x, - h) to (2, z )  along straight subpaths, 
use of the boundary condition w = 0 on z = -h combined with (3.5) gives 

(z, 2) 

(z, -h) 
(c-u)dz = c(z+h)- udz. (3.6) 

l h  
$(x , z )  = J 

In particular, for points on the free surface, z = c(x) and $(x,c(x)) = $s,  it  gives 

$s = $(x, f[fz)) = c(S(x) + h) - u dz. 

From the definition (3.6), $(x,c(x)) is seen to represent the instantaneous 
horizontal mass flux under the wave, per unit crest width, across a plane x = 
constant. This is measured as positive in the direction of x decreasing. But $(x, 
c(x)) = $s and this is independent of x. Hence the instantaneous mass flux is the 
same for all values of x and must be equal to the mean mass flux, i.e. 

(3.7) 
l h  

where the minus sign is necessary because $s and M+ are measured as positive in 
opposite directions. With M* given by (3.4), $s becomes 

$s = (c-a)h- U(z)dz. If: 
This is the appropriate form for $, and depends upon an unknown parameter 01, the 
wavenumber k (via c = w / k )  and the position of the wave trough zt. 

If ~s in (3.7) and (3.8) are equated, then it is easily shown that 

ah+cc = r: u d z - r h  U(z)dz 
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and a t  c(x) = zt, i.e. the wave trough, 

Eh+cz, = r h ( a - L ' ) d z .  (3.9) 

In the moving reference frame, for z in the range -h  < z < zt, the horizontal 
velocity field can be written in the appropriate representation of (2.1) and (2 .2 ) ,  i.e. 

m 
u = U(z)  + C u,(z) cos nkx 

n-1 
(3.10) 

with the origin chosen to  be vertically below a wave crest. The wave trough 
corresponds to the point ( x / k ,  zt) and substitution from (3.10) into (3.9) yields 

m 

ah+czt = 2 ( -  u,(z) dz. 
n=1 SI', 

If $n(z )  is defined by 

$n(z)  = -[, U,(z) dz, -h  < < ~ t r  

an alternative form of (3.11) is 
m 

ah+czt = - c ( -  l)n$n(zt). 
n=l 

(3.1 1)  

(3.12) 

(3.13) 

This relationship will prove useful in examining the vorticity distribution in $4. 

3.2. The relationship between @(x ,  z )  and U ( z )  
Consider the general point ( x ,  z )  with - h < z d zt. At this point the stream function 
+(x, z )  is given by (3.6). On substitution from (3.10) and (3.12) into (3.6) the stream 
function becomes 

$(x , z )  = c(z+h)-  U(z)dz+ C +n(z)cosnkx. (3.14) 

Now let z take the fixed value zo. From (3.14), the stream-function variation across 
the plane z = zo will be a function of x alone. The mean value of @(x, zo) ,  with respect 
to x, will be 

m 

I[, n=1 

@(x, zo)z = c(zo + h )  - U ( z )  dz. L 
Thus there must be a point xo in the range 0 < x, d x/k, i.e. within the half- 
wavelength domain being used, dependent upon z, such that 

(3.15) 

As the streamlines do not cross this is the only such point within the range of x for 
a given value of z,. The equation of the streamline which passes through (xo,zo) is 

and at (xo,zo) 
m 

C $,(z,) cosnkx, = 0. 
n-1 

(3.16) 

Note that in the linear wave theory xo would occur for all zo a t  the point x,  = n/2k .  
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This will not be true for a nonlinear wave regime ; generally the value of xo will be 
less than n/2k but will depend upon zo. The dependence upon x,, cannot be easily 
determined because the functions $ n ( ~ )  in (3.16) are not known. The importance of 
this streamline is that it establishes a relationship between the stream function $ and 
the input data function U(z ) .  

Not all streamlines can be expressed in the form (3.15); this restriction is limited 
to the range 0 6 $ < $(x0(xt), zt). For the streamlines $(xo(xt), zt) < $ < $s there is 
no simple relation between $ and U(x).  However, $s is given by (3.8) and it is easily 
shown that if c % U then ($ , -$(x0(xt) ,  zt)/$, is of the same order of magnitude as 
xt/h. Thus within the range 0 < $I$, < 1, the domain over which $I$, is not known 
will generally be small. 

4. The vorticity distribution 

stream function are related via the Poisson equation (2.4), 
The vorticity is known to be constant along a streamline and the vorticity and 

a = -V$. 

At a general point (2, z )  the stream function $(x, z )  is defined by (3.6). Combining 
these two relations gives the vorticity distribution 52 in terms of the horizontal 
component of velocity u, au a Z u  a = &+I* @dZ, 

which is valid throughout the wave domain. 

simplification of (4.1). Substitution for u from (3.10) and (3.12) yields 
Imposing the restriction that z lies within the range - h  < z < zt allows 

m 

a = U‘(z) - [f; - ( T L ~ ) ~ $ , ]  cos nkx ,  
n-1 

where a prime indicates differentiation with respect to z .  This limitation on the range 
of z is not severe, since all streamlines must a t  least touch the domain -h  < z 6 xt. 

The objective is to determine the vorticity along each streamline. It is convenient 
to consider the bottom streamline $ = 0, the intermediate streamlines 0 < $ < $, 
and the surface streamline $ = $s separately. 

4.1. The bottom streamline $ = 0 
The horizontal bottom boundary x = - h is coincident with the steamline $ = 0. 
Thus the expression for SZ in (4.2) must be independent of x. Hence the vorticity on 
the streamline $ = 0 is 

Q(O) = U’( -h ) .  (4.3) 

4.2. The intermediate streamlines 0 < $ < $, 
I n  Appendix A, the functions $n(z ) ,n  = 1,2, ..., are shown to satisfy the 
inhomogeneous Rayleigh equation 

where g,(z) is a complicated function of The derivation of (4.4) does not 
assume any properties of the +,(z) other than that the harmonic series (3.10) 

. . , 
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converges. However, analytic solutions of this equation cannot be obtained except 
for the special case in which u" = 0, corresponding to constant vorticity and an 
irrotational wave motion. 

If (4.2) is combined with (4.4) the vorticity distribution becomes 

where 
m 

G(z, z )  = g,(z) cosnkx. 
n=l 

(4.5) 

Now consider the streamline which passes through the point (zo(zo), zo) for zo within 
the range -h < zo < zt. The value of z,b along this streamline is given by (3.15) and 
the point (xo(zo), zo )  is defined by the property (3.16). On this streamline the vorticity 
distribution (4.5) is 

a($) = U'(z,)-G(x,, 20)' (4.6) 

$ = c(z0 + h)  - U(X)  dz. s_", for $ given by 

An exact form for G(xo, zo)  in (4.6) cannot be deduced. However, an approximate 
form can be obtained if perturbation series solutions to the system of equations (4.4) 
are sought. If E is a small parameter for the flow, such as the wave slope, a series 
solution in powers of 6 for each $r,(z) and g,(z) can be constructed ; the formulation 
and details are contained in Appendix B. The extension of this procedure to the series 
G(z,,zo) is outlined in Appendix C and the result is 

Substitution into (4.6) gives the vorticity distribution - streamline relation 

on $ = c(z0 + h)  - U(Z)  dz. 
r h  

(4.7) 

The vorticity distribution in (4.7) is of an interesting form. There is a known mean 
flow contribution of zero order, a second-order correction term and subsequent 
correction terms being a t  most of fourth order. To use a finite-amplitude wave theory 
the second-order correction term must be included though the first-order stream 
function $.l(z)  is unknown. This second-order term depends essentially upon $l(z) 
and the derivatives of U(z) ,  since generally the U - c  contribution will be dominated 
by the c factor. As @l(z) represents the mass flux under the first-order wave solution, 
I + ~ ~ ( Z )  will increase with z and be largest near the free surface. The C ~ ( Z )  derivative 
contributions will be most significant whenever U ( z )  changes rapidly. Thus the 
combined influence of k1(z) and U(z )  is likely to be strongest close to the free surface 
and in the vicinity of strong shear layers in the flow. 

note that the equation (4.4) for z,bl(z) 
together with the results of Appendix B gives 

To obtain a usable approximation for 
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From (.3.12), $ l ( - h )  = 0. Further, from (3.13), $l(zt) = ah+czt+O(E2). Thus to 
determine $l(z) solutions are sought of the system 

This will reduce the error term in (4.7) to 0(e3),  but the system (4.8) is readily solved 
numerically as an initial-value problem and the method used by Thomas (1981) is 
applicable. 

4.3. The surface streamline ykS 

The surface streamline touches the domain -h < x < zt a t  the point ( n / k ,  zJ, 
corresponding to the wave trough. Thus the vorticity on the surface streamline can 
be obtained using the expression (4.5) evaluated at ( 7 ~ / k ,  zt), 

The last term can be simplified using (3.13) and, on rearrangement, 

The series in (4.9) is considered in Appendix I) and its form is determined to give 
an error term of 0(e4), However, the form is very complicated and not amenable to 
algebraic manipulation or numerical evaluation. If one order of magnitude of 
accuracy is sacrificed then the following simple expression is obtained : 

m c ( -  1)""gn(zt) = :(olh+Cz,)2 + 0 ( € 3 ) .  (4.10) 
n-1 

A parallel with irrotational wave theory suggests that the error is of O(e4) but this 
is not easily proved, nor required, since the vorticity distribution for a general 
streamline using (4.7) and (4.8) contains an error O(e3) .  Combining (4.9) and (4.10) 
gives the surface vorticity distribution finally as 

Q($,) = U(z,)+(olh+cz,)- +;(ah+ czJ2 {L [z]} + 0(s3).(4.1 1)  u-c u-c Z=Zt 

This expression appears to be a power series in (ah+cz,), but it cannot be readily 
extended to  include higher powers. However, the importance of strong shear layers 
near to the free surface is apparent in the higher-order terms and consistent with the 
nonlinear effects for the intermediate streamlines, as described by (4.7). 

The vorticity-streamline distribution is now determined via (4.3), (4.7) and (4.1 l),  
noting that (4.8) is required for evaluation of (4.7). On streamlines for which 
$(q,(zt), zt) < @ < $rS, the value of a($) can be obtained by numerical interpolation. 

If the waves are small then an approximation consistent with the linear wave 
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theory can be introduced. This requires the vorticity-stream function relationship to 
be given by terms up to and including those of O(E)  in (4.3), (4.7) and (4.11), i.e. 

a(@) = V ( - h ) ,  @ = O  

T T l l  I 

(4.12) 

For many current profiles, which do not contain regions where U"(z )  or the higher 
derivatives are large, the relatively simple expression (4.12) is likely to provide an 
adequate vorticity-stream function relationship. 

5. Numerical considerations 
5.1. Input data 

The input data are usually given as the wave amplitude a, radian frequency w ,  mean 
water depth h and mean flow profile U ( z )  below the wave trough. Alternatives to the 
first two are the wave height H and period T respectively. 

In  practice the input parameters a, w ,  h are given either by specification or from 
experimental data. The input mean profile U(z )  will have a functional representation 
only if the profile is of a specified analytic form and in such a case the derivatives of 
U(z)  can usually be readily obtained. If experimental measurements are the source 
of the input data then U ( z )  will be defined by the set of values {U(z,), i = 1, . . . ,Nz }  and 
the requirement is a numerical procedure that will provide values for U(x) and its 
derivatives as the need arises. The comparison between theory and experiment 
presented in $8  has a discrete set of experimentally obtained values to define the 
function U(z)  and it is clearly important that this discrete data set is carefully 
handled. 

The task of determining a numerical representation for U(z )  throughout the range 
-h < z < zt is composed of two main parts. First as U( - h)  and U(zJ will not usually 
be measured, there is the difficulty of extrapolation below the first and above the last 
data points to obtain estimates for U( - h)  and U(z,). Secondly, suitable interpolation 
techniques must be employed to determine U(z)  and its first two derivatives for the 
range -h < z < zt for some given value of 2,. The extrapolation problem is clearly 
easier if the first and last data points are as close to z = - h and z = Z, as possible. 
Reasonable estimates for U( - h)  and U(zJ can be obtained using rational polynomial 
approximation with an appropriate number of adjacent data points. An alternative 
method for U( - h)  is to use a logarithmic profile near the bed and fit this to the 
nearest two data points ; the estimate for U( - h)  is the value predicted for the upper 
edge of the laminar sublayer. The estimates obtained for U ( - h )  and U(zJ at this 
stage are regarded as good initial guesses for the interpolation problem. 

The essential requirement of the interpolation process is that it supplies values for 
U(z)  and its first two derivatives a t  all points within the range - h d z ,< zt when the 
input data are the experimental data set {U(z) ,  i = 1 , .  . . ,Nz}  together with the 
estimates obtained for U(-h )  and U(z,). Additionally it is usually necessary to 
incorporate a small degree of smoothing to counterbalance experimental errors in 
measurement. If the experimental data points are each given equal weighting, with 
correspondingly smaller weighting given to the initial estimates for U( - h)  and U(zt) ,  
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then the implementation of a standard interpolation routine with smoothing will 
usually work well. The method used here was a weighted least-squares fit using 
orthogonal polynomials. Cubic spline interpolation could also be used but this has 
two drawbacks, both of which concern the evaluation of the second derivative U”(z). 
The first is associated with the nature of spline interpolation : between any two data 
points the spline is a cubic and hence the second derivative is a linear function of z 
and this may be a poor approximation in regions of high rate of shear. Secondly, 
many smoothing routines involving cubic splines minimize a weighted average of the 
modulus of the second derivative over the domain -h < z < z,; this is clearly an 
undesirable feature if the second derivative is most important when its magnitude is 
greatest. 

5.2. The unknown parameters 

The unknown quantities which appear in the formulation of $53 and 4 are the 
wavenumber k, the wave-like mass flux a and the position of the wave trough 2,. In 
addition the general position of the free surface is also unknown and the wave trough 
is just the lowest point of the free surface. The method of solution employed must’ 
therefore determine the parameters a and k, together with a functional representation 
of the free surface. 

The free surface is described by z = Yfx) or alternatively by z = z(x, @s) depending 
upon the frame of reference and independent variables being used. There are three 
conditions to be imposed upon [(x) : the free surface must be periodic, the mean value 
of [(x) over a wavelength must be zero and the amplitude of the first harmonic of [(x) 
must be the input parameter a. Each of these conditions can be treated as a 
constraint in an optimization process. However, for the present purposes it is easier 
to use a trigonometric polynomial of order N to approximate the function [(x) : 

N 

[(x) = an cosnkx, a, = a ,  
n-1 

which can alternatively be written as 

Z ( X ,  1) = C AcosnX. 
n-1 h 

The form for the free surface satisfies all of the necessary conditions, although the 
constants a,, n = 2 , .  . . , N are unknown. 

The representation (5.1) of the surface elevation can be regarded as analogous to 
that used for Stokes waves and thus is best suited to waves on water of finite depth, 
i.e. kh of O(1). For shallow water the number of harmonics required will increase as 
kh decreases and accordingly the form (5.1) may not be the most appropriate one to 
use. I n  such cases a constraint formulation may be better. 

For a specified value of N ,  there are N +  1 unknown parameters to be determined; 
these are k, a, a2, .  . . , aN. 

5.3. Optimization strategy 

For specified values of the parameters k,  a, a,, . . . , aN a solution of the governing 
equation (2.13) is sought over the range of half a wavelength, i.e. 
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The boundary conditions imposed on the lower and upper boundaries are given by 
(2.14) and (5.2) respectively, 

N 

Z ( X , O )  = - 1 ,  Z ( X ,  1 )  = 
n=l h 'OSnx 

(5.4) 

and periodicity constraints are imposed on the side boundaries X = 0, X. 

The non-dimensional vorticity distribution F( ul) in (5.3) is defined to be h252(@)/$s 
from (2.11) and the appropriate Q(9) - 4 relationship is given in $4. As both Q($) 
and 9, depend upon a, k and zt, the function F($)  will also vary with a, k and zt. If 
y is the (N+ 1)-dimensional vector with components (k, a, a2, . . . , a N ) ,  then y describes 
the unknown parameters and for given y the function F(  !P) is regarded as known. 

The boundary-value problem defined by (5.3) and (5.4) is well-posed and it is 
assumed that solution function Z ( X ,  Y) can be obtained. For a general value y the 
condition that the free surface is a surface of constant pressure will not be satisfied 
and the function on the right-hand side of (2.15) will be a function of X. Define the 
function q(X ; y) by - . -  

9," 1 

2gh 2, 
q ( X ; y )  = Z ( X ,  1)+-- , [1+(kh)22:] ,  on Y =  1. 

If q ( X ; y )  is independent of X then the free surface will be of constant pressure. 

to be the mean value of p(X;y) over one half-wavelength, 
To gain an estimate of the error to the free-surface boundary condition, define q(y)  

and define the root-mean-square error R ( y )  to be 

(5 .5)  

If R ( y )  = 0 then the free-surface condition will be satisfied identically. Thus the 
requirement may seem to be to  determine y so that R(y)  = 0. As R ( y )  2 0, this is a 
minimization problem in the N +  l-dimensions defined by the components of y .  I n  
practice (5.3) must be solved numerically and the solution will contain numerical 
errors, hence the theoretical minimum of R ( y )  = 0 will not usually be attainable. 

However, it is not sufficient just to obtain a value of y which minimizes R(y) .  
Although the vorticity-streamline relationships from $53 and 4 are given in terms of 
the input data, they also contain a dependence upon the components of y .  This 
dependence on y cannot be arbitrary because there must be compatibility with the 
original input data, i.e. the value of y which minimizes R(y)  must be consistent with 
the chosen reference frame. A compatibility condition is established as follows. 

For a given value of y and a solution function Z ( X ,  w), the horizontal component 
of velocity in the moving reference frame will be given by (2.12), i.e. u(z,z) = 
c - + J ( h Z Y ) .  If z is in the range - h  < z < zt, the mean value of u over half a 
wavelength will be 

G(z ; y) = - ~ ( 5 ,  Z )  dz. 
R Ck 

The input data for the mean flow are given as the data set {U(z,), i = 1,. . . ,Nz} .  Thus 
the output velocity field is compatible with the input data when condition (2.1) is 
satisfied, i.e. 

a(zd ;Y)  = mi) 
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for i = 1 ,  . . . , N,. A global condition is preferable to N ,  individual conditions and is 
obtained by defining a ( y )  to be the mean-square non-dimensional velocity error 
given by 1 N z  

4 Y )  = - CI [ @ i ; Y ) - - ( Z i ) l * .  (5.6) 
Nz Sh n-1 

All of the individual conditions will be satisfied identically if and only if a ( y )  = 0. If 
the input mean flow is given by an analytic function rather than a discrete data set, 
an integral equivalent of (5.6) is necessary. 

An appropriate strategy is to minimize R ( y )  subject to the equality constraint 
~ ( y )  = 0. However, numerical considerations suggest that a ( y )  = 0 cannot be 
attained exactly and the algorithm must take account of this. It may seem that the 
best approach would be to minimize R ( y )  subject to the inequality constraint 
a ( y )  < u,, where u, is a prescribed acceptable mean velocity error, but there are two 
good reasons for not adopting this procedure. First, finding an attainable realistic 
value for u, is not easy and secondly the requirement is to make a ( y )  as small as 
possible, not just a ( y )  < u,. A better approach is to proceed with the equality 
constraint and be aware of the numerical difficulties associated with a(y). 

Following Greig (1980) a minimum is sought of the objective function 

L(Y 9 Y) = R(Y 1 - Yf l (Y)  + tWa2(y),  (5.7) 

where y is a Lagrange multiplier and W is a weighting factor. The weighting factor 
W ensures the correct behaviour of L ( y ,  y )  with regard to the constraint and can be 
given arbitrary values ; for the present work the value W = 10 was used satisfactorily. 

The algorithm for obtaining the minimum of (5.7) is composed of three simple 
steps. (i) Pu t  y = 0 and obtain the unconstrained minimum of L(y ; 0) ; this will occur 
when y = yo,  corresponding to a constraint error a(yo) .  (ii) Define y1 = - Wa(yo) and 
minimize L ( y ; y l )  to obtain y ,  and ~ ( y , ) .  (iii) For i = 2 . .  . , put yi = yiW1- Wa(yi-,) 
and minimize L ( y ; y J  to obtain yi and a(y i ) .  

The algorithm is halted when a(yJ  is deemed to be sufficiently small. For almost 
all of the current profiles studied it was not found necessary to implement step (iii), 
the value a(yl) was very close to the best that  could be achieved and higher iterations 
brought little appreciable increase in accuracy. Use of an algorithm such as the one 
outlined above requires a suitably robust unconstrained minimization routine ; this 
is usually available as a standard computer library routine. 

5.4. Finite-difference solution procedure 

In  order to implement the optimization procedure following (5.7), it is necessary to 
be able to determine the objective error function R ( y )  and constraint error a ( y ) ,  
defined by (5.5) and (5.6) respectively, for an arbitrary value of y .  This requires 
solution of (5.3) on the given rectangular domain, subject to the fixed boundary 
conditions (5.4) and the periodicity conditions on X = 0, IT. 

The equation (5.3), subject to the prescribed boundary conditions, is solved using 
a finite-difference scheme. A uniform grid is generated by the incremental measures 
AY,AX in the Y,X-directions respectively and the magnitude of AY, AX is 
controlled by the integers Mg, Ng such that 

The grid is composed of the points {( !Pi,Xi) ; i = 1,  . . . , M g  + 1 ;j = 1 ,  . . . , N g +  3) and 
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the value of Z(X, ,  !Pi) is denoted by 2,. In  this notation the bottom and top 
streamlines correspond to  i = 1 and i = M g +  1 respectively and the wave crest and 
trough correspond to j = 2 and j = N g + 2 .  Grid points strictly outside the half- 
wavelength with j = 1 and j = Ng + 3, are utilized to implement the periodicity 
conditions. 

For internal grid points, all derivatives in (5.3) can be approximated by central- 
difference formulae and Zij expressed as the weighted average of its neighbouring 
points. The appropriate formula for 2, is given by Dalrymple (1973, 1977). Note that 
the boundary points with i = 1 or i = M g +  1 are of a fixed value for given y and 
cannot change during the solution procedure. 

At the grid points not corresponding to the top and bottom streamlines, initial 
values of Z ,  are allocated using the linear irrotational wave solutions. The solution 
is obtained iteratively using successive over-relaxation, with the relaxation 
parameter taking the value specified by Roache (1982, p. 118) for given Mg and Ng.  
Convergence was deemed to have been achieved when the maximum error over the 
whole grid between successive iterations was less than some prescribed value, usually 
taken to be lop6. The procedure is similar to that described by Dalrymple (1973, 
1977) but is simpler to implement because the boundary condition on the surface 
streamline is fixed for given y .  

Once the values of Zij have been determined to the required degree of accuracy, 
then all necessary derivatives can be obtained using either difference formulae or 
interpolating functions. Hence R ( y )  and a(y) can be calculated. 

5.5.  Implementation 
The first step is to choose the number of harmonics N which are employed to 
approximate the free surface and to assign initial values of the unknown parameters. 
In the linear wave regime N = 1 can be used, but in general N must be increased as 
the wave slope increases or the wavelength-to-depth ratio decreases. The wave- 
number k is assigned a value derived from the linear dispersion relation and this 
may contain a representative current term if required, e.g. let the initial value k 
satisfy (w-  kU,)' = gk tanh kh, where U, is a mean-current term which represents the 
input data in some way. An estimate for a can be obtained using a second-order 
irrotational approximation to (3.9). The higher-order surface harmonics a2, . . . , aN 
are most easily represented by relations of the type a2 = h1, a3 = h2, etc. 

The following procedure was found by experience to provide the most suitable way 
of implementing the numerical model for an arbitrary input set. 

With the unknown parameters assigned the initial values given above, the 
optimization routine is run for two iterations with a 20 x 40 grid. This provides an 
estimate for the minimum of L ( y ,  y )  with corresponding solution vector yl, constraint 
error measure a(yl) and Lagrange multiplier y l .  Finally, with the same value for y l ,  
the objective L ( y ,  yl) is minimized, using a 40 x 60 grid, to  obtain updated estimates 
for y l ,  a(yl) and the solution function Z ( X ,  !P). This last step, with a greater number 
of grid points, essentially provides a fine-tuning mechanism and can be omitted if 
high-accuracy solutions are not required and U ( z )  is a sufficiently smooth function. 
All flow quantities, such as surface profile or velocity field, can then be calculated as 
necessary. 
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6. Test procedures 
For a given set of input parameters a, w ,  h and arbitrary mean flow U(z) ,  no finite- 

amplitude solutions exist except for the special cases in which either U(z)  is constant 
or possesses a constant derivative. The earlier model of Dalrymple (1973, 1977) 
requires U to be specified as a function of $ and so cannot be used directly for 
comparison. If attention is restricted to the linear waves regime, then the model 
described by Thomas (1981) can be used to  obtain a solution numerically for a mean 
flow with an arbitrary distribution of vorticity. The present model was tested by 
comparison with the available results for linear waves when U(z )  is arbitrary and 
with the special cases of either U(z)  or U'(z) being constant for finite-amplitude 
waves. In each case the model was implemented using the procedure outlined in the 
previous section. 

Generally very good agreement was found between the predictions of the present 
model for wavelength and velocity profiles and those obtained using the Thomas 
(1981) model in the linear wave wgime. Comparisons were made with both analytical 
forms and experimentally obtained profiles for the mean flow U(z ) .  When the mean 
flow is prescribed to take a given analytic form, the amplitude a was chosen to ensure 
that the wave slope was sufficiently small to be well within the linear wave regime; 
good agreement was obtained with just one harmonic to describe the free surface, i.e. 
N = 1. For the experimental data N = 3 was used; this is because the experimental 
current profiles presented by Thomas for linear waves are measured without waves 
and the mean flow with the waves may vary slightly owing to second-order effects, 
though these are likely to be very small. The agreement between the experimental 
results and present predictions was always a t  least as good as that found in the earlier 
study by Thomas (1981). 

It should be noted that the current profiles with and without the waves will only 
be the same in the linear regime. For nonlinear waves this will certainly not be the 
case, owing to the redistribution of the vorticity in the undisturbed current by the 
nonlinear interaction processes. 

For finite-amplitude waves two comparisons with available results and theories 
were made. The first was for a constant current on water of finite depth and the 
second corresponds to a current with constant vorticity within the shallow-water 
regime. 

An input data set of h = 0.5 m, a = 50 mm, w = 1 . 6 ~  rad/s and V(z)  = -0.1 m/s 
was selected. These values were chosen because they are of similar magnitudes to the 
experimental data considered in $8. As the waves are irrotational and of finite 
amplitude, Stokes' fifth-order theory can be used to determine the wave properties. 
The appropriate coefficients are given by Skjelbreia & Hendrickson (1960) and the 
amendment a t  the fifth order due to Fenton (1985) was incorporated. For the data 
given, the Stokes theory predicts a wavelength of 2.0379 m and the corresponding 
value of kh is approximately 1.54 so that the waves are towards the upper end of the 
finite-depth regime. The numerical model predicts a wavelength of 2.0394 m for a 
20 x 40 grid and 2.0385 for a 40 x 60 grid and in each case the error measure R(y,)  was 
3 . 5 0 ' - 5 .  Not surprisingly, the finer grid produces the better approximation, with an 
error at the fifth significant figure, as the wave motion will show a considerable 
variation with depth in this regime. Good agreement was also obtained between the 
velocity profiles predicted by each model. 

The second finite-amplitude data set was h = 10 ft,  T = 10 s, H = 2 ft,  U(z)  = 
-0.3(z+ 10) ft/s. These data were used by Dalrymple (1973, 1977) to generate 
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Harmonics Grid size h @8 R(YJ 
7 20 x 40 164.72 178.88 3.10'-5 

40 x 60 164.70 178.87 3.50'-5 

9 20 x 40 164.71 178.89 7.00'-6 

19th-order stream-function theory 164.6 178.76 5.90'-6 

TABLE 1.  Numerical predictions for the wavelength h and surface stream function @s for the data 
set h = 10 ft, T = 10 s, H = 2 ft and U(z)  = -0 .3 ( z+  10) ft/s. The values obtained by Dalrymple 
(1973, 1977) using a nineteenth-order stream-function theory are also shown, together with the 
mean free-surface boundary-condition error 

input data for a consistency test in his finite-difference numerical model. The input 
data required by Dalrymple were the wavelength h and the surface streamline mass 
flux @.,. A nineteenth-order stream function model, as described by Dalrymple (1973, 
1974), produced a highly accurate solution of h = 164.6 f t  and @s = 178.76 ft2/s and 
this corresponds to kh = 0.3817 which lies within the shallow-water-wave regime. 
The present model was employed to predict values for h and $., for comparison with 
those obtained using the stream function theory; the results are presented in 
table 1 .  Predictions are presented for seven and nine harmonics and for two grid 
sizes. As expected the solutions improve, measured by the criterion that Rfy,) 
becomes smaller, as the number of harmonics increases. There is a relatively smaller 
increase in accuracy for a refinement in grid size and this could be anticipated for the 
shallow-water-wave regime. One interesting feature of the solutions is that the 
accuracy of the nine harmonic models is of comparable order with that of the high- 
order stream- function model. 

In  each of the test procedures described above the numerical model performed 
very well. However, it should be pointed out that  for these special cases the 
numerical model is very inefficient in comparison with existing models. The strength 
of the present numerical model is that it will still work well when U(z)  is an arbitrary 
function and the waves are of finite amplitude; the previous models cannot be 
extended to include such general cases. 

7. The experimental facility and procedure 
7.1 .  Experimental facility 

A detailed description of the experimental facility has previously been given by 
Thomas (1981). For the present series of experiments one additional feature was 
included. This was a microprocessor-controlled data analyser which was com- 
missioned to produce an accurate on-line analysis of the velocity signals provided by 
the laser-Doppler anenometer. For each wave cycle the data analyser determined the 
maximum, minimum and mean voltages and finally gave the averaged values of 
these quantities over some specified number of consecutive wave cycles. 

7.2. Experimental procedure 
The following procedure was adopted for each of the experiments. 

The pump motor was set to the required speed to generate the recirculatory flow 
and the water depth adjusted to give the desired value when measured immediately 
in front of the paddle (which is essentially a region of still water in the absence of 
waves). 
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A steady wavetrain was then generated a t  a prescribed frequency and the 
amplitude of the waves was controlled by the stroke of the sinusoidal paddle motion. 
The mean water depth in front of the wavemaker was checked and adjusted if 
necessary. 

The average maximum, minimum and mean horizontal velocities per wave cycle 
were measured a t  a number of points, typically twenty, beneath the wave trough. 
The measuring points were approximately uniformly spaced with the top point being 
as close as possible to the wave trough. These averaged velocity values were obtained 
by measuring the appropriate quantity over a number of consecutive wave cycles 
and determining the average such value; usually 200 cycles were used, with the 
purpose of eliminating the influence of turbulence in the data. The mean horizontal 
values describe the current Ufz) and the maximum and minimum values correspond 
to the horizontal velocity field below the wave crest and trough respectively. Vertical 
velocities were not measured because they do not provide an input to the numerical 
model and were not deemed necessary for comparison with theoretical predictions. 
The average maximum horizontal velocity per wave cycle was also measured at  some 
points between the wave trough and crest ; this is for comparison with the numerical 
predictions. 

The surface profile was also considered similarly, with the averaged first-harmonic 
magnitude providing an input to the numerical model. Higher-order harmonics were 
also measured as they yield insight into both nonlinearity and higher-order flume 
effects. The water depth h was determined accurately a t  the measuring site using the 
mean of the signal from the waveheight recorder. Finally two wave probes were used 
to determine the wavelength. 

8. Results 
In  the series of experiments described here the water depth immediately in front 

of the paddle was maintained at  0.55 m. The wave frequency was 0.8 Hz and the 
same paddle displacement was used to generate the waves in each experiment. 

The measured velocities and wavelengths, together with the corresponding 
theoretical predictions, are presented graphically in figures 3-7 and tabulated in 
table 2. Figure 3 corresponds to the pump not being in operation and the current 
within the recirculatory system is generated entirely by the wave motion ; the other 
figures are arranged as a sequence of increasingly adverse pump-generated currents. 
In each case the input current profile U ( z )  is defined by the set of circles shown on 
the figure and the water depth h and amplitude a are given in the table. Velocity 
profiles predicted by the numerical model are shown in the figures as solid lines and 
the measured maximum or minimum velocity values are denoted by crosses. 

For each current profile the numerical model was implemented in the way 
described in $6 and the results presented correspond to a 40 x 60 grid. The quantity 
0 is defined to be the mean depth-averaged current below the wave trough and the 
appropriate value of 0 for each profile is given in table 2. In  each implementation of 
the model the final value of the mean constraint (5.6) was determined ; in dimensional 
terms the error in satisfying the constraint exactly lay between 0.2 % and 0.4 % of 
the appropriate value of 0, which is considered to be highly satisfactory. In  all cases 
five surface harmonics, i.e. N = 5 ,  were used. 

The measured wavelength A, and the predicted wavelength A, are seen in table 2 
to agree very well, with a maximum relative error of 0.5%. From figures 3-7, 
generally good agreement is seen to exist between the measured velocity profiles 
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Figure h a U 4n A P  4 1  nu A, 
3 0.551 64.51 14.44 2.288 2.299 2.299 2.330 2.228 
4 0.548 68.89 -85.69 2.129 2.127 2.133 2.149 2.030 
5 0.549 69.94 -118.01 2.084 2.091 2.087 2.090 1.984 

7 0.549 75.73 -218.09 1.832 1.841 1.812 1.915 1.662 
6 0.545 72.42 -166.53 2.008 2.009 1.996 1.999 1.878 

TABLE 2. The measured and predicted physical properties of the interactions illustrated in figures 
3-7. All wavelengths and the mean water depth h are measured in m ; wave amplitudes are denoted 
by a and are measured in mm. The quantity 0, measured in mm/s, is the depth-averaged mean flow 
below the wave trough. The measured wavelength is A,  and there are four predicted values: A,, A,, 
are the predicted values from the numerical model using the full vorticity distribution of $4 and 
the approximate form of (4.12) respectively, A ,  is the fifth-order Stokes theory value for constant 
current 0, and A, corresponds to the linear model of Thomas (1981) 
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FIGURE 3. Comparison between theory and experiment for the horizontal particle velocities under 
the wave crest and wave trough. All velocities are measured in mm/s and the physical properties 
of the system are given in table 2. 0, mean flow (used as input data) ; x , measured velocities; -, 
predicted profile; -.-, theoretical profile for constant current. For this current, 0 = 14.44 mm/s. 

1 

under the wave crest and trough and the corresponding theoretical predictions. The 
region of greatest disparity occurs close to the free surface and is most noticeable 
under the wave trough in figures 5 and 6 and under the wave crest in figure 7 .  In  each 
case the disagreement is confined to the streamlines closest to the free surface but the 
cause of the phenomenon is not readily identified. An important contributory factor 
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FIQURE 4. As for figure 3, with 0 = -85.69 mm/s. 

may be the presence of free second and higher harmonics in the wavetrain, and these 
are indeed noticeable in the harmonic analysis of the surface elevation, but would not 
seem to be large enough to completely explain the observed difference between 
theory and experiment. 

These free harmonics arise when attempting to generate a wavetrain of finite 
amplitude using a sinusoidal paddle motion; the phenomenon is described by Hansen 
& Svendsen (1974). Reflections from the beach or the screens (which were not found 
to appreciably change the beach reflection coefficient) are unlikely to be contributory 
factors to the disparity because the area of disagreement is confined to close to the 
free surface. With these minor disagreements acknowledged the numerical model can 
be regarded as predicting wavelengths and velocity profiles with a good degree of 
accuracy. 

The present numerical model is applicable to waves of finite amplitude on a current 
containing an arbitrary distribution of vorticity. At this point, it is useful to use 
existing theories and the experimental results to determine the influence of both the 
finite-amplitude character of the waves and the vorticity. 

To assess the importance of finite amplitude the wavelength prediction using the 
linear theory for an arbitrary distribution of vorticity was calculated for each current 
profile. The quantity appears in table 2 as A, and the method of calculation is given 
by Thomas (1981). From table 2 the maximum relative error between Am and A,  
occurs for the maximum adverse current and is approximately 10 %. Although the 
other profiles do not exhibit as large a disparity it is clear that finite-amplitude 
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FIGURE 5. As for figure 3, with 0 = - 118.01 mm/s. Where appropriate in figures 5-7 the velocity 
prediction using the first-order vorticity distribution, described by (4.12), is denoted by . . . . 
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profile predictions, although these profiles are not presented here. 
For a constant current 0 the wavelength calculated using the Stokes fifth-order 

wave theory is denoted in table 2 by he with 0 being the mean depth-averaged 
current below the wave trough for each profile. A comparison of A, and Aii provides 
the simplest assessment of the importance of vorticity in the flow field. 

The influence of vorticity is greatest for the profiles presented when the current is 
weakest and strongest, corresponding t o  figures 3 and 7. In  both of these figures the 
velocity profiles for the finite-amplitude irrotational wavetrain with constant current 
0 are shown by dot-dash lines and it is clear that the vorticity distribution is an 
important property for both wavelength and velocity predictions. The vorticity 
distribution for the mean flows in figures 3 and 7 is globally influential and not 
confined to narrow shear layers. In figure 3, U ( z )  does not contain any regions of 
strong vorticity and U(z)  appears to change smoothly over the whole range ; however, 
U ( z )  cannot be well modelled by a uniform current nor by one with uniform vorticity. 
For the profile in figure 7 there is a strong shear layer near to the bed but a reasonable 
approximation to the other points can be obtained using a least-squares straight-line 
fit to the data. This straight-line fit corresponds to a current with a uniform vorticity 
distribution and the wavelength for this constant vorticity profile predicted by the 
numerical model is 1.850 m, which is seen from table 2 to be a reasonable estimate 
of the wavelength, and the same is true of the corresponding velocity predictions. 
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FIGURE 6. As for figure 3, with 0 = - 166.53 mm/s. 

For figures 4-6 the irrotational theory provides a reasonable approximation to 
both wavelength and velocity profiles. They do not provide agreement to the same 
degree of accuracy as the numerical model but are surprisingly good. In these cases 
the velocity profiles are well described by irrotational approximations except near 
the bed where there are pronounced shear layers. However, the dominant feature is 
that the currents are globally irrotational and hence the applicability of the 
irrotational model. An examination of a region containing a strong shear layer, such 
as the range - 1.0 < x/h < -0.8 in figure 5, confirms that the local variations in 
velocity cannot be predicted accurately using the irrotational theory. 

The importance of the global distribution of vorticity has been demonstrated 
above. However, the numerical model contains a dependence not just upon the 
vorticity distribution but also upon the way the vorticity changes via higher-order 
wave contributions. The quantity Apt which appears in table 2 is the wavelength 
prediction using the first-order vorticity distribution as described by (4.12). If A,, is 
regarded as the first-order approximation, then A, as presented here is the next-order 
approximation and essentially provides a fine-tuning mechanism. Both A, and /Ipl 
will usually give good estimates for the wavelengths; the prediction A, is usually 
slightly better than APl and this is most noticeable for the strongest current. The 
velocity predictions for the present profiles corresponding to APl are almost always 
very close to those corresponding to the full numerical model and A,; the exceptions 
usually occur near to the free surface and these are shown in the figures by dotted 
lines. However, the constraint is more difficult to implement with the first-order 
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FIGURE 7.  As for figure 3, with 0 = -218.09 mm/s. 

vorticity approximation and for the profiles studied the mean constraint error was 
up to four times that of the full numerical model, with the maximum individual error 
always occurring close to the free surface. 

These experimental results confirm the validity of the present model and 
demonstrate the importance of the global vorticity distribution. 

9. Slowly varying properties of the flow 
The experimental results described in the previous section can also be used to 

investigate the slowly varying properties of the flow in a similar manner to that 
described by Thomas (1981) for linear wave-current interactions. 

The waves in the experiments were all generated on still water of depth 0.55 m at  
the same fixed frequency using the same paddle displacement. In the absence of 
pump-generated currents the velocity profiles of figure 3 would be reproduced in each 
case. When a current is present each of the interactions illustrated in figures 4-7 is 
justifiably regarded as being locally constant. The sequence of interactions is viewed 
as a set of windows on a continually changing process in which the current becomes 
increasingly adverse owing to upwelling from below in the slowly varying sense, i.e. 
changes in the current occur over a scale of many wavelengths. For the experimental 
facility the current generating mechanism causes changes in the current to occur over 
lengthscales of the order of one wavelength and strictly speaking the slowly varying 
theory is not valid. However, with this difficulty acknowledged and in the absence 
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of a more suitable theory, good agreement was shown to exist by Thomas (1981) 
between predictions using the Whitham (1974) theory and experimental results for 
interactions between linear waves and essentially irrotational currents. 

For linear waves on a current with uniform vorticity, defined by U ( z )  = Us + 522, 
the conservation relations that govern the amplitude and wavelength variations are 

(w-kUJ2 = [qk-Q(w-kU,)] tanhkh,) 

-cg = constant, 
E 

w-kU 

where E is the mean energy density of the waves, cg is the group velocity and 0 is 
the depth-averaged current, i.e. l7 = U,-$2h. The first relation in (9.1) is the local 
dispersion relation and the second is often referred to as the conservation of wave 
action. If 52 = 0 then the flow is irrotational with E = ipqa2 and the simplified form 
of (9.1) is due to Longuet-Higgins & Stewart (1961) for deep water and more 
generally to  Bretherton & Garrett (1968). When 52 + 0, E is a complicated function 
of the wave and current parameters and the appropriate expression was derived by 
Jonsson, Brink-Kjaer & Thomas (1978). There is a t  present no analogue of (9.1) for 
a general rotational current. A nonlinear form of (9.1) exists only for a current with 
zero vorticity. 

The experimental results of figures 4-6 have been shown to be reasonably well 
predicted for both wavelength and velocity profiles by assuming the current profile 
to  be irrotational, though the predictions are not as accurate as those of the full 
numerical model. For figures 3 and 7 the vorticity distribution is globally important 
and the irrotational approximation does not work very well. This suggests that a 
nonlinear analogue of (9.1) may describe some of the amplitude and wavelength 
variations quite well, but that others will probably not be so well represented. 

Following Crapper (1979) the average Lagrangian L for a nonlinear wavetrain and 
mean flow U is written, with density p omitted, as 

L = (Y-$T)h-&h2+L,, ( 9 4  

where y is the Bernoulli constant and L, is due to  the waves alone. The slight 
difference between (9.2) and the form given by Crapper is due to a difference in the 
choice of the position of the coordinate origin ; the form (9.2) is appropriate for water 
of mean depth h when the bottom is horizontal. 

If theory consistent with the Stokes fifth-order theory is to be used, then L, must 
be determined correct to  O(a6). The derivation of L, correct to O(a4) has been given 
by Whitham (1974, p. 555). Using a similar derivation but extended to higher order 
gives 

(9.3) 
a2(w - kU)2 

L, = -ha2{l  ++(ak)2cl(kh) +$(ak)4c2(lch))+ 4k tanh kh fO(ak)*, 

where the coefficients c,(kh) and c2(kh) are the same as those given by Skjelbreia & 
Hendrickson (1960), i.e. 

cl(kh) = (9T4 - 1 0 P  + 9)/8T4, 

c2( kh) = (3840 - 40968' + 2592S4 - 1008S6 - 5944S8 - 183OS1O 

+ 147S1z)/512~0(5+ T2) ,  

where T = tanhlch and Sz  = 1-T2.  
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The modulations in the wavelength and wave amplitude are governed by the 
equations 

19-41 

and it is clear from (9 .2)  that only L, will contribute to these. The first of these gives 

( w -  = gk tanh kh[l + (ak)2cl(kh) + (ak)4c2(kh)] (9.5) 
which is the local dispersion relation as well as a global conservation relation. 

written most simply as 
The second relation in (9 .4)  is the conservation of wave action equation, which is 

a2 

k - [Fl(kh, U) + ( ~ k ) ~ F ~ ( k h ,  U) + ( ~ k ) ~ F ! ( k h ,  U ) ]  = constant, (9.6) 

kh kU where 
Fl(kh) = ;+ + 

sinh 2kh ( g k  tanh kh); ' 

kh + F2(kh) = c1 {' 'sinh 2kh 2(gk 

7 
kh + 

Note that Fl(kh) is the group velocit'y to local phase speed ratio for linear waves. If 
a reference position is described by a, h, k and U having the values a,, h,, k, and U, 
respectively, then (9 .6)  can be written as 

The two relations (9.5) and (9 .7)  are coupled but are sufficient to describe the 
amplitude and wavelength variations. Suppose for fixed frequency w that a suitable 
reference set a,, h,, U, is known and that the data set { (h i ,  Ui), i = 1 , .  . . , N )  is given. 
The first step is to determine k, using (9 .5) .  For each pair of values of (hi, U J ,  the 
value of a/ao and k / k o  is then determined simultaneously from (9.5) and (9 .7) .  

The reference data point is chosen to correspond to the profile in figure 5 with 
0 = - 118.01 mm/s; the data from table 2 gives a, = 69.94 mm and A, = A ,  = 
2.090 m. The predicted value of the wavelength rather than the measured value must 
be used because the dispersion relation (9 .5)  must be satisfied. All of the required 
data for the measured values of a/ao and A / h ,  ( = k , / k )  are available from table 2 and 
the predicted values are obtained using (9 .5)  and (9 .7) .  The results are displayed 
graphically in figure 8 and tabulated in table 3. 

Comparison of the measured and predicted wave amplitude and wavelength 
variations in figure 8 and table 3 shows surprisingly good agreement between the two 
sets of data. It had been previously anticipated that the data from figures 4 4  might 
fit the irrotational theory reasonably well and for this reason the reference point was 
chosen to correspond to figure 5. However, the data points corresponding to figures 
3 and 7 ,  for which the vorticity has been established as an important factor in the 
local wave-current interactions, appear in figure 8 as part of a general pattern rather 
than taking isolated values. The general pattern established by the experimental 
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Measured Predicted Measured Predicted 
Figure U (mm/s) 4% a/% A/& AlAO 

3 14.44 0.922 0.886 1.094 1.112 
4 -85.69 0.985 0.969 1.018 1.027 
5 - 118.01 1 .ooo 1 .ooo 0.997 1.000 
6 - 166.53 1.035 1.048 0.961 0.958 
7 -218.09 1.083 1.105 0.877 0.916 

TABLE 3. The measured and predicted values of the non-dimensional wave amplitude and 
wavelength. The experimental da ta  are taken from table 2 and the predicted values derived using 
equations (9.5) and (9.7). I n  the notation of table 2, a, and A, correspond the values of a and A, 
when 0=-118.01 mm/s 
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FIGURE 8. The predicted and experimentally obtained values of the non-dimensional wave 
amplitude a/., and wavelength A / A o  plotted against the depth-averaged mean current IJ 
(measured in mm/s). The data are given in table 3 : -, theoretical curves; x , experimentally 
measured wavelengths ; + , experimentally measured wave amplitudes. 

data is reasonably close to the predicted curves, though the relative position of 
theoretical and experimental values must depend upon the reference point chosen. 

It cannot be deduced that the irrotational theory will provide a similar degree of 
accuracy for wave amplitude and wavelength variations when the current profiles 
possess a greater distribution of vorticity. The discrepancy between the experimental 
values and theoretical curves in figure 8 may well be due in part to neglect of 
vorticity, in addition to other likely contributory factors such as beach and current 
reflections and experimental measurement errors. It has previously been mentioned 
that the slowly varying theory is not strictly valid as the experimental facility forces 
the current to change over a distance of the order of a wavelength and it is readily 
acknowledged that this and the preceding factors will play possibly important roles 
but which are difficult to quantify. Consideration of all these various mechanisms 
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strengthens the initial impression that the agreement in figure 8 is surprisingly good, 
even though the linear result (9.1) hints a t  the central role played by the mean 
current r7. 

10. Conclusions 
Good agreement has been shown to exist between the predictions of a numerical 

model and experimentally measured values of the wavelength and velocity profiles 
associated with a finite-amplitude wavetrain interacting with a steady current 
containing an arbitrary distribution of vorticity. 

The experimental results obtained, together with existing finite-amplitude 
theories, demonstrate the importance of the global vorticity distribution in the 
wave-current interaction. If the current profile is essentially irrotational with 
vorticity restricted to thin layers, then the irrotational theory will provide a 
reasonable approximation for both wavelengths and velocities except in the vicinity 
of the shear layer. For flows with a global distribution of vorticity, the vorticity will 
have an important influence on the wavelength and velocities. In  such cases the 
irrotational theories can only be used if the vorticity distribution is approximately 
constant as this corresponds to an irrotational wave field. When the vorticity is 
globally important and not uniformly distributed the full numerical method should 
be used although some approximation can be made for vorticity distributions which 
do not contain regions of rapid change. 

A slowly varying approach for finite-amplitude waves on constant currents was 
employed in conjunction with the experimental results. Moderate agreement was 
obtained between theory and experiment, with the maximum discrepancy occurring 
for those currents with influential global vorticity distributions. The agreement was 
encouraging and confirms the importance of the depth-averaged mean flow in 
determining the amplitude and wavelength modulations. In addition to the presence 
of vorticity in the current distributions, a second difficulty was associated with the 
implementation of the slowly varying theory. The theory assumes that any changes 
in the wave and current properties occur over a scale of several wavelengths. In  this 
application changes in the current occurred over a lengthscale of approximately one 
wavelength and thus the slowly varying theory is not strictly valid. Given the twin 
difficulties of vorticity and regime validity the theory provided surprisingly good 
estimates for the amplitude and wavelength variations. 

The experimental results described in this paper were obtained when the author 
was a member of the School of Mathematics, University of Bristol, using facilities 
made available in the Hydraulics Laboratory of the Department of Civil Engineering. 
To the Department of Civil Engineering for providing facilities, and the SERC for 
providing financial support, the author wishes to express his gratitude. 

Appendix A. The equation for 
I n  a frame of reference moving with the wave, the condition that the vorticity is 

constant along a streamline gives (u-c)QX+wS2, = 0. With the stream function 
$ ( s , z )  defined by (2.3) and $ related to l2 by the Poisson equation (2.4), the 
condition becomes 

$AV2$)z = $2(V2Y% (A 1) 
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For - h  < z < zt a solution is sought of the form given by (3.14) : 

$(x , z )  = c ( z+h) -  f U(z)dz+ 2 $',(z)cosnkx. 
m 

J -h n-1 

Although this form is only assumed to exist for the range given, the usual practice 
in linear and near-linear wave theories is to assume that this is valid up to the 
position of the mean value of the free surface. 

Substitution from (A 2)  into (A 1 )  and matching harmonic components gives 

n+l 

+ X D m , , - , ,  n = 1 , 2  ,..., 

where Dm, = mk($-,[$m - (mk)2$m] - $ m [ $ p -  (q l~)~$,J> and a prime denotes differ- 
entiation with respect to z. 

A more convenient form of this system of equations is 

This is equation (4.4). 

Appendix B 
The equation (A 3) cannot be solved exactly using analytical techniques. 

Fortunately in the present application only the form of the functions g,(z) is of 
interest and so solution of the system of equations is not necessary. 

Suppose that e is some small parameter for the flow, such as the wave slope. In 
keeping with existing theories for weakly nonlinear waves, an expansion for t+bn(z) is 
sought of the form 

(B 1) lCrn(z) = E ~ [ $ ~ ~ ( Z )  + e $ n l ( ~ )  + E ' $ ~ ~ ( Z )  + . . . I ,  n = 1,2,  . . . . 
Thus each lCln(z) is of O(en),  but each $n j ( z )  is of O(1) ( j  = 0, 1 , 2 , .  . .). Each of the 
functions g,(z) must be expanded similarly, 

g,(z) =€"[gno(Z)+€gnl(z)+e'gnz(Z)+ . . .I,  n = 1 , 2 , * - - .  (B 2)  

Substitution from (B 1) and (B 2)  into (A 3)  and equating equal powers of e gives 

as the system of equations to determine (rn,(n = 1,2 ,  ..., j = 0 , 1 , 2 ,  ...). The 
appropriate method of solution for such a system, with regard to the structure of g,,, 
is to first determine $no(n = 1,2 ,  .. .), then $,,(n = 1 , 2 , .  . .) and so on. 

The form of each function g,,(z) can be determined from (A 3) with the expansions 
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(B 1) and (B 2) inserted. If the functions f l f n j  are determined in the order prescribed 
above then the gnj  are composed of previously determined functions. 

Solutions are sought which are correct to third order and so have an error of O(e4). 
This necessitates determination of the functions g n j  for which n + j  < 3. These are 
straightforward to obtain but the algebra is tedious. I n  their simplest forms, the six 
relevant functions are given by 

910 = g11 = 0, Q20 = -40 $lo [ 1 ’ 9  

where [ 3 = V / ( U - c ) .  

Simplification is possible for the function g2(z )  = e2q2, + ~~g~~ + . . . to the degree of 
accuracy employed. As $l(z) = qblo + E ~ $ ~ ~  + . . . and $: = e2[$i0 + 2e$-,, @ll + . . .I, it 
is clearly seen using (B 4) that 

g 2 ( z )  = -~ @: [ - u” ] + O ( t ‘ ) .  
4(U-c) u-c 

Appendix C. The series G(x,, zo)  

In $4 the series G(x , z )  is defined to be 

m 

G(x,  z )  = z g n ( z )  cosnkx. 
n=l 

For a given value of z = xo ,  xo is the value of x a t  which 

m 

$n(zo)  cos nkx, = 0. 
n-1 

As @n(  --h) = 0 for all n, i t  can be assumed that xo > -h .  With ~ n ( ~ o )  given by (B l) ,  
it is relatively easy to show that the solution xo of (C 2) satisfies 

C O S ~ X , =  O ( E ) ,  c o s 2 k x , = - l + O ( e 2 ) ,  cos3kz0= O ( E ) .  

Substitution for g,(x) from (B 2) and (B 4) yields 

G(x,,zo) = - E 2 [ Q 2 0  + EQ211+ O(e4) 

= -g2 (z0 )  + o(e4). 

But g2(z )  is given by (B 5 )  and hence 

G(x,, z0)  = 1 p(z) [ - u” ]’+O(e4), 

4 ( U - c )  u-c 
which is the result used in (4.7). 
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Appendix D. The series G(n/lc,zt) 
This series appears in (4.9) and is simply -gl(xt) +g2(xt) -g3(zt) + . . . . With the 

expansion given in (B 2) all of the necessary terms are listed in (B 4). Making use of 
the form for g2(z) given in (B 5),  the series is 

I n  the expressions for g12 and g30 the functions 
and $2 respectively without any loss in accuracy of (D 1). An alternative and 
expanded form of (D 1) is 

and e2$,, can be replaced by 

+O(e4) on z = zt. (D 2) 

The boundary condition to be applied on x = xt is given by (3.13), 

$l - $2 = ah + + o(2). 
Unfortunately this cannot be combined with (D 2) to  give an expression in which 
and $2 do not appear and which is correct to third order. 

However, if an order of magnitude is sacrificed then the substitution = ah+cz, 
will give 

and this is the expression which appears in (4.10). 
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